Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Transl Med ; 14(664): eabq3059, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2088395

ABSTRACT

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster after either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely affected the olfactory bulb (OB) and olfactory epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month after viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.


Subject(s)
COVID-19 , Animals , COVID-19/complications , Cricetinae , Humans , Interferons , Mesocricetus , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
2.
Science translational medicine ; 2022.
Article in English | EuropePMC | ID: covidwho-1918644

ABSTRACT

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely impacted the olfactory bulb (OB) and epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month post viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics. SARS-CoV-2 infection results in sustained inflammation in the nervous system and is a driver of long COVID. Description

3.
STAR Protoc ; 3(2): 101383, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1799657

ABSTRACT

Here, we describe a series of protocols detailing the steps for evaluating SARS-CoV-2 infection in models of the human eye. Included are protocols for whole eye organoid differentiation, SARS-CoV-2 infection, and processing organoids for single-cell RNA sequencing. Additional protocols describe how to dissect and culture adult human ocular cells from cadaver donor eyes and how to compare infection of SARS-CoV-2 and the presence of SARS-CoV-2 entry factors using qPCR, immunofluorescence, and plaque assays. For complete details on the use and execution of this protocol, please refer to Eriksen et al. (2021).


Subject(s)
COVID-19 , Adult , Eye , Humans , Organoids , SARS-CoV-2
5.
Sci Immunol ; 6(66): eabm3131, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1483985

ABSTRACT

SARS-CoV-2 has caused morbidity and mortality across the globe. As the virus spreads, new variants are arising that show enhanced capacity to bypass preexisting immunity. To understand the memory response to SARS-CoV-2, here, we monitored SARS-CoV-2­specific T and B cells in a longitudinal study of infected and recovered golden hamsters (Mesocricetus auratus). We demonstrated that engagement of the innate immune system after SARS-CoV-2 infection was delayed but was followed by a pronounced adaptive response. Moreover, T cell adoptive transfer conferred a reduction in virus levels and rapid induction of SARS-CoV-2­specific B cells, demonstrating that both lymphocyte populations contributed to the overall response. Reinfection of recovered animals with a SARS-CoV-2 variant of concern showed that SARS-CoV-2­specific T and B cells could effectively control the infection that associated with the rapid induction of neutralizing antibodies but failed to block transmission to both naïve and seroconverted animals. These data suggest that the adaptive immune response to SARS-CoV-2 is sufficient to provide protection to the host, independent of the emergence of variants.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Immunologic Memory/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adaptive Immunity/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/virology , Cricetinae , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Mesocricetus , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Virus Replication/genetics
6.
Stem Cell Reports ; 16(9): 2274-2288, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1360129

ABSTRACT

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.


Subject(s)
COVID-19/pathology , Chemokine CCL2/metabolism , Heart Injuries/virology , Monocytes/immunology , Myocytes, Cardiac/metabolism , Animals , Cell Communication/physiology , Cell Line , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Macrophages/immunology , Male , Myocytes, Cardiac/virology , Pluripotent Stem Cells/cytology , Vero Cells
7.
Cell Stem Cell ; 28(7): 1205-1220.e7, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1230788

ABSTRACT

The SARS-CoV-2 pandemic has caused unparalleled disruption of global behavior and significant loss of life. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible routes of entry is essential. While aerosol transmission is thought to be the primary route of spread, viral particles have been detected in ocular fluid, suggesting that the eye may be a vulnerable point of viral entry. To this end, we confirmed SARS-CoV-2 entry factor and antigen expression in post-mortem COVID-19 patient ocular surface tissue and observed productive viral replication in cadaver samples and eye organoid cultures, most notably in limbal regions. Transcriptional analysis of ex vivo infected ocular surface cells and hESC-derived eye cultures revealed robust induction of NF-κB in infected cells as well as diminished type I/III interferon signaling. Together these data suggest that the eye can be directly infected by SARS-CoV-2 and implicate limbus as a portal for viral entry.


Subject(s)
COVID-19 , Human Embryonic Stem Cells , Adult , Epithelium , Humans , Pandemics , SARS-CoV-2
8.
Nat Biomed Eng ; 5(8): 815-829, 2021 08.
Article in English | MEDLINE | ID: covidwho-1213929

ABSTRACT

The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Testing/methods , Lab-On-A-Chip Devices , Animals , COVID-19/diagnosis , COVID-19/virology , Cell Line , Cricetinae , Female , Green Fluorescent Proteins , Humans , Male , SARS-CoV-2/drug effects , Virus Internalization/drug effects
9.
Immunity ; 54(3): 557-570.e5, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1082008

ABSTRACT

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global morbidity, mortality, and societal disruption. A better understanding of virus-host interactions may potentiate therapeutic insights toward limiting this infection. Here we investigated the dynamics of the systemic response to SARS-CoV-2 in hamsters by histological analysis and transcriptional profiling. Infection resulted in consistently high levels of virus in the upper and lower respiratory tracts and sporadic occurrence in other distal tissues. A longitudinal cohort revealed a wave of inflammation, including a type I interferon (IFN-I) response, that was evident in all tissues regardless of viral presence but was insufficient to prevent disease progression. Bolstering the antiviral response with intranasal administration of recombinant IFN-I reduced viral disease, prevented transmission, and lowered inflammation in vivo. This study defines the systemic host response to SARS-CoV-2 infection and supports use of intranasal IFN-I as an effective means of early treatment.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Interferon Type I/metabolism , SARS-CoV-2/physiology , Animals , Biopsy , COVID-19/genetics , COVID-19/immunology , Cricetinae , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Type I/genetics , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Organ Specificity/immunology , Virulence , Virus Replication/immunology
10.
Stem Cell Reports ; 16(3): 505-518, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1081358

ABSTRACT

The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant interindividual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly afflict healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants influence vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can have an impact on viral infection and thus contribute to clinical heterogeneity in COVID-19. Ongoing genetic studies will help to identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , 3' Untranslated Regions/genetics , Adolescent , Adult , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Female , Furin/genetics , Host-Pathogen Interactions/genetics , Humans , Induced Pluripotent Stem Cells/virology , Male , Neurons/virology , Peptide Hydrolases/genetics , SARS-CoV-2/pathogenicity , Vero Cells
11.
Res Sq ; 2020 Nov 17.
Article in English | MEDLINE | ID: covidwho-946476

ABSTRACT

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. In order to study the cause of myocardial pathology in COVID-19 patients, we used a hamster model to determine whether following infection SARS-CoV-2, the causative agent of COVID-19, can be detected in heart tissues. Here, we clearly demonstrate that viral RNA and nucleocapsid protein is present in cardiomyocytes in the hearts of infected hamsters. Interestingly, functional cardiomyocyte associated gene expression was decreased in infected hamster hearts, corresponding to an increase in reactive oxygen species (ROS). This data using an animal model was further validated using autopsy heart samples of COVID-19 patients. Moreover, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be infected by SARS-CoV-2 and that CCL2 is secreted upon SARS-CoV-2 infection, leading to monocyte recruitment. Increased CCL2 expression and macrophage infiltration was also observed in the hearts of infected hamsters. Using single cell RNA-seq, we also show that macrophages are able to decrease SARS-CoV-2 infection of CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and proposes a mechanism of immune-cell infiltration and pathology in heart tissue of COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL